ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advances in Biomechanics and Tissue Regeneration

دانلود کتاب پیشرفت در بیومکانیک و بازسازی بافت

Advances in Biomechanics and Tissue Regeneration

مشخصات کتاب

Advances in Biomechanics and Tissue Regeneration

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0128163909, 9780128163900 
ناشر: Academic Pr 
سال نشر: 2019 
تعداد صفحات: 420 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 مگابایت 

قیمت کتاب (تومان) : 59,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 24


در صورت تبدیل فایل کتاب Advances in Biomechanics and Tissue Regeneration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پیشرفت در بیومکانیک و بازسازی بافت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پیشرفت در بیومکانیک و بازسازی بافت



پیشرفت‌ها در بیومکانیک و بازسازی بافتگستره وسیعی از پیشرفت‌ها و پیشرفت‌های اخیر در زمینه‌های بیومکانیک و بازسازی بافت را پوشش می‌دهد. این شامل شبیه سازی محاسباتی، بافت های نرم، میکروسیال، سیستم قلبی عروقی، روش های تجربی در بیومکانیک، مکانیک زیست شناسی و بازسازی بافت است. تئوری ها و کاربردهای پیشرفته ارائه شده است و این کتاب را برای هر کسی که تصمیم می گیرد تحقیقات آینده خود را در این زمینه به کدام سمت ببرد ایده آل می کند. علاوه بر این، برای همه کسانی که در حال کاوش در زمینه های جدید هستند یا در حال حاضر روی یک پروژه بین رشته ای در بیومکانیک بافت کار می کنند ایده آل است.

  • ترکیب روندهای جدید در مدل‌سازی بیومکانیکی و بازسازی بافت
  • حوزه وسیعی را ارائه می‌دهد که کل زمینه بیومکانیک بافت را پوشش می‌دهد
  • شامل دیدگاه‌هایی از مهندسی است، پزشکی و زیست شناسی، بنابراین دیدگاهی کل نگر از این رشته ارائه می دهد

توضیحاتی درمورد کتاب به خارجی

Advances in Biomechanics and Tissue Regeneration covers a wide range of recent development and advances in the fields of biomechanics and tissue regeneration. It includes computational simulation, soft tissues, microfluidics, the cardiovascular system, experimental methods in biomechanics, mechanobiology and tissue regeneration. The state-of-the-art, theories and application are presented, making this book ideal for anyone who is deciding which direction to take their future research in this field. In addition, it is ideal for everyone who is exploring new fields or currently working on an interdisciplinary project in tissue biomechanics.

  • Combines new trends in biomechanical modelling and tissue regeneration
  • Offers a broad scope, covering the entire field of tissue biomechanics
  • Contains perspectives from engineering, medicine and biology, thus giving a holistic view of the field


فهرست مطالب

Cover
ADVANCES IN
BIOMECHANICS
AND TISSUE
REGENERATION
Copyright
Contributors
Part I: Biomechanics
1
Personalized Corneal Biomechanics
	Introduction
	Eye Anatomy
	Patient-Specific Geometry
		Corneal Surface Reconstruction
		Corneal Surface Finite Element Model
		Stress-Free Configuration of the Eyeball: Reference Geometry
	Patient-Specific Material Behavior
		Material Model
		Monte Carlo Simulation
		Neighborhood-Based Protocol (K-nn Search)
		Validation With Clinical Data
	Surgery Simulation
		Simulation of Refractive Surgery: Astigmatic Keratotomy
		Simulation of ICRS Implantation
	Conclusions
	Acknowledgments
	References
	Further Reading
2
Biomechanics of the Vestibular System: A Numerical Simulation
	Introduction
	Diagnosing Vestibular Dysfunctions
	Numerical Methods Applied to Human Morphology
	Biomechanical Model of the Semicircular Ducts
	Conclusions
	Acknowledgments
	References
3
Design, Simulation, and Experimentation of Colonic Stents
	Introduction
	Ideal Mechanical Properties for Colonic Stents
		Mechanical Parameters
		Commercial Stents
			Self-Expanding Stainless Steel Stents
				Wallstent (Fig. 3.3)
				Gianturco Stent (Fig. 3.4)
				Song and Choo-Z-Modified Gianturco Stents (Fig. 3.5)
			Self-Expanding Nitinol Stents
				Esophacoil Stent (Fig. 3.6)
				Ultraflex Stent (Fig. 3.7)
				Choo Stent (Figs. 3.8 and 3.9)
		Mechanical Behavior
			Resistance Mechanisms
				Helicoidal Spring
					Kinematics Relations
					Static Equilibrium
					Behavior Equations
				Radial Spring
					Kinematics Relations
					Static Equilibrium
					Behavior Equations
				Radial Multiple Arcs Spring
					Kinematics Relations
					Static Equilibrium
					Behavior Equations
	Design Methodology
		Stent Material
		Stent Geometry
		Finite Element Model
		Cell Model
	Simulation Methodology
		Shaping Process
		Surgical Handling: Crimping and Releasing From Catheter
		Peristaltic Motion
	Manufacturing and Animal Experimentation
		Material
		Stent Manufacturing Process
		Instrumental Adaptation Test
		Animal Experimentation
			Stenosis Generation
			Insertion Process
	Customized Parametric Design
	Conclusions
	References
4
Mechanical and Microstructural Behavior of Vascular Tissue
	Introduction
	Microstructural Modeling of the Carotid Artery
		Experimental Findings for the Porcine Carotid Artery
			Histological Analysis
			Uniaxial Mechanical Test
		Material Models for the Carotid Artery
			Phenomenological Model
			Cross-Linked Phenomenological Model
			Microstructural Model
			Cross-Linked Microstructural Model
		Results on Modeling the Porcine Carotid Artery
	Mechanical Characterization and Modeling of the Aorta
		Experimental Findings for the Porcine Aorta
			Biaxial Mechanical Test
			Histology and Confocal Laser Scanning Microscopy Imaging
		Material Models for the Porcine Aorta
		Phenomenological Model
		Structural Model
		Microfiber Model
		Results on Modeling the Porcine Carotid Artery
	Conclusions
	Acknowledgments
	References
5
Impact of the Fluid-Structure Interaction Modeling on the Human Vessel Hemodynamics
	Clinical Background
	Finite Element Modeling of the Human Blood Vessels
		Image-Based Geometrical Reconstruction
		Generation of the Computational Grids
		Boundary Conditions Dilemma
			Aortic and Carotid Inflow
			The Impedance-Based Method
			The Vascular Fractal Network
			Computation of the Vascular Impedance
		Inflow and Outflow Conditions for the Aortic and Carotid Hemodynamics
		Boundary Conditions for the Solid Domain
		Blood Flow Modeling
		Quantification of Hemodynamic Indices
		Structural Modeling
			Aortic Structural Modeling
			Carotid Structural Modeling
		FSI Coupling and Numerical Modeling
	Results
		Arterial Hemodynamics
		Instantaneous Wall Shear Stress Comparison
		Time Average Wall Shear Stress Comparison
		Arterial Compliance
		Limitations
	Conclusion
	Acknowledgments
	References
6
Review of the Essential Roles of SMCs in ATAA Biomechanics
	Introduction
	Basics of Aortic Wall Mechanics and Passive Biomechanical Role of SMCs
		Composition of Arteries
			The Extracellular Matrix
			A Multilayered Wall Structure
		Basics of Aortic Biomechanics
		Passive Mechanics of the Aortic Tissue
		Multilayer Model of Stress Distribution Across the Wall
	Active Biomechanical Behavior
		Smooth Muscle Cells
			SMC Structure
			Principle of SMC Contractility
			Intracellular Connections
		Multiscale Mechanics of SMC Contraction
			Subcellular Behavior
			(Sub)cellular Models for the SMC
		Effect of SMC Contraction on the Distribution of Stresses Across the Aortic Wall
	Mechanosensing and Mechanotransduction
		Mechanosensing
		The Key Role of SMCs in ATAAs
		SMC Mechanotransduction
		Mechanical Homeostasis in the Aortic Wall
		Consequences for Aortic Tissue
		Toward an Adaptation of SMCs in ATAAs?
	Summary and Future Directions
	Acknowledgments
	References
7
Multiscale Numerical Simulation of Heart Electrophysiology
	Cardiac Electrophysiology: Introduction
	Equations That Govern the Electrical Activity of the Heart
		Governing Equations
			Bidomain Model
			Monodomain Model
		Myocardium Conductance
		Action Potential Models
			Structure of an Action Potential Model
			The Cell Membrane
				The Nernst Equation
				Goldman-Hodgkin-Katz Equation
			Gates
			Ionic Channels
			The Ten Tusscher Action Potential Model
		Numerical Solution of the Electric Activity of the Heart
			Spatial-Temporal Discretization
			Integration of the Mass Matrix
	Vulnerability in Regionally Ischemic Human Heart: Effect of the Extracellular Potassium Concentration
		Methods
			Mathematical Model
		Model of Acute Ischemia
			Action Potential Model Under Ischemic Conditions
			Heart Model
			Electrophysiological Heterogeneities Under Acute Ischemia
			Stimulation Protocol
			Numerical Simulations
		Results
		Discussion and Conclusions
	Acknowledgments
	References
	Further Reading
8
Towards the Real-Time Modeling of the Heart
	Introduction
	Cardiac Mechanics and Model
		Passive Stress
		Active Stress
		Windkessel Model
	Reduced Order Method
		Proper Orthogonal Decomposition
		POD With Interpolation
			Parametric PODI
			Temporal PODI
	Whole Heart Cycle Modeling
		Time Standardization Process
		PODI Usage and Database Construction
		Numerical Examples
			Human Left Ventricle Example
			Idealized Biventricle Example
	Patient-Specific Cardiac PODI Computation
		Degrees of Freedom Standardization Method
			Cube Template Standardization
			Heart Template Standardization
		Numerical Examples
			Cube Template Standardization
				Coarse Template Discretization
				Refined Template Discretization
			Heart Template Standardization
				Coarse Template Discretization
				Refined Template Discretization
	Conclusion
	Appendix
		Moving Least Square Approximation
	Acknowledgments
	References
9
Computational Musculoskeletal Biomechanics of the Knee Joint
	Introduction
	Methods
		Passive Tissues
			Cartilage
			Ligaments
			Meniscus
		Knee Joint Passive Finite Element (FE) Model
		Lower Extremity Musculoskeletal (MS) Model
	Equilibrium Applications: Boundary Conditions and Loading
	Joint Stability Analyses
	Validation
	Future Directions
	Acknowledgments
	References
10
Determination of the Anisotropic Mechanical Properties of Bone Tissue Using a Homogenization Technique Combined With Meshl ...
	Introduction
	Homogenization Technique
		Fabric Tensor Morphologic-Based Method
		Phenomenological Material Law Method
	Validation
		Scale Study
		Rotation Study
		Structural Application
	Conclusions
	Acknowledgments
	References
11
Analysis of the Biomechanical Behavior of Osteosynthesis Based on Intramedullary Nails in Femur Fractures
	Introduction
	Methodology of Simulation
	Types of Fractures and Osteosynthesis
	Results
	Conclusions
	Acknowledgments
	References
12
Biomechanical Study in the Calcaneus Bone After an Autologous Bone Harvest
	Introduction
	Methods
	Results
		Displacements Varying the Talus Load and Constant Achilles Tendon Load Based on the Amount of Bone Extraction
		Displacements Varying Achilles Tendon Load Based on the Amount of Bone Extraction
	Discussion
	Conclusion
	Acknowledgments
	References
Part II: Mechanobiology and Tissue Regeneration
13
Multidimensional Biomechanics Approaches Though Electrically and Magnetically Active Microenvironments
	Relevance of Electric and Mechanical Clues for Tissue Engineering
		Bone
		Collagen and Other Piezoelectric Tissues
		Cardiac Tissue
		Nerve Tissues
	Principles for Electric and Mechanical Clues
	Electric and Electromechanical Clues
	Magnetic, Magnetomechanic, and Magnetoelectric Materials
	Conclusions
	Acknowledgments
	References
14
Using 3-D Printing and Bioprinting Technologies for Personalized Implants
	Introduction
	Bioprinting
		Bioprinting Techniques
	Materials
		Natural Hydrogels
		Synthetic Hydrogels
	3D Printing of Personalized Silicone Implant
		Soft 3-D Implant Printing: Example of Silicone
		Silicone ORL Implant and the Need of Personalization
			Different Types of Stenosis of the Respiratory Tract
			Management of Stenosis: Development of Silicone Soft Implants
			Complications Related to Standard Prostheses
		Benefits of 3D Printing
		Different Steps to Print Personalized Medical Implant
		3-D Printing of Silicone for Healthcare
			Technology and Challenge
			Mono-Component Silicone
			Bi-Component Silicone
		Rheological Properties of Printable Silicone
			Rheological Testing and Parameters
	Conclusion
	14.1IntroductionThe last two centuries have seen a steady increase in average life expectancy all around the world, particular
	References
	Further Reading
15
Computational Simulation of Cell Behavior for Tissue Regeneration
	Introduction
	Methodology
		Mechanotaxis
			Traction Force
			Protrusion Force
			Drag Force
		Chemotaxis and Thermotaxis
		Electrotaxis
		Force Equilibrium
		Discretization of the Cell and ECM Domains
		Cell Migration, Considering Constant Cell Shape
		Cell Migration, Considering Cell Shape Change and Remodeling
		MSC Differentiation and Apoptosis
		Cell Proliferation
	Numerical Implementation and Applications
		Effect of ECM Depth on Cell Mechanosensing and Migration
		Cell Behavior Within a Multisignaling ECM
			Multicell Migration Within a Multisignaling ECM
			Single Cell Morphology Within a Multisignaling ECM
		Cell Differentiation and Proliferation Due to Mechanotaxis
		Conclusions
	Acknowledgments
	References
16
On the Simulation of Organ-on-Chip Cell Processes: Application to an In Vitro Model of Glioblastoma Evolution
	Introduction
	Problem Description
	Experiment Description: Materials and Methods
	Mathematical Framework
		Balance Equations for Cell Populations and Species
			Cell Populations
			Species Concentrations
		Physical Models for Fluxes and Sources
			Source Terms in Cell Population Equations
				Proliferation
				Differentiation
			Migration Terms in Cell Population Equations
				Diffusion
				Mechanotaxis
				Chemotaxis
				Electrotaxis
				Thermotaxis
			Source Terms and Diffusion for Chemical Species
				Diffusion
		ECM Remodeling Coupling
	Implementation
		3D Finite Element Implementation
			Weak Form
			Spatial Discretization
				Cell Populations
				Chemical Species
				Compact Form
			Time Integration
				Forward Euler method
				Backward Euler Combined With the Broyden Method
		1D Finite Element Implementation
			Unidimensional Equations
			Weak Form
			Spatial Discretization
			Time Integration
	Some Applications of Interest
		Reproducing In Silico Measurements of In Vitro Cell Cultures in Microfluidic Devices
			Model and Parameters
			Boundary Conditions
			Initial Conditions
			Results and Discussion
		In Silico Design and Quantification of Experiments in Microfluidic Devices
			Model and Parameters
			Geometry
			Boundary Conditions
			Initial Conditions
			Results and Discussion
	Conclusions
	Acknowledgments
	References
17
Skin Mechanobiology and Biomechanics: From Homeostasis to Wound Healing
	Introduction
	Biomechanics in the Context of the Skin
		Measuring Skin Mechanical Properties
			Tensile Testing
			Compression Testing
			Indentation Testing
			Suction Testing
	Skin Mechanobiology
		Mechanosensing and Mechanotransduction
		Effect of Forces Over Fibroblasts and Keratinocytes
	Biomechanics and Mechanobiology in the Context of Skin Wound Healing
	Final Remarks
	References
18
Cartilage Regeneration and Tissue Engineering
	Cartilage Tissue [1, 2]
		Cartilage Cells [1]
		Hyaline Cartilage Extracellular Matrix [1, 2, 10]
			ECM Components
			ECM Territories
		Synovial Joints
		Cartilage ECM Turnover [2, 10]
	Articular Cartilage Aging and Senescence
	Cartilage Repair and Osteoarthritis
	Articular Cartilage and Tissue Engineering
		Cells
			Cartilage-Derived Cells
			Mesenchymal Stem Cells
				Bone Marrow
				Adipose Tissue
				Umbilical Cord
				Dental Pulp
				Peripheral Blood
				Synovium
		Scaffolds
			Natural Materials
				Protein-Based Scaffolds
				Polysaccharide-Based Scaffolds
			Synthetic Materials
		Growth Factors
	Acknowledgments
	References
19
Impact of Mechanobiological Perturbation in Cartilage Tissue Engineering
	Introduction
	Mechanotransduction of Mechanical Signals
	Influence of Extracellular Cues
		Stiffness
		Cell Shape and Dynamic Morphological Changes
		Substrate Topography
		Intracellular Mechanotransduction
	Effect of External Mechanical Signals
		Compression
		Shear Stress
		Fluid Flow
		Mechanotransduction of External Mechanical Stimulation
	Future Directions
	References
20
Biomechanical Analysis of Bone Tissue After Insertion of Dental Implants Using Meshless Methods: Stress Analysis and Osseo ...
	Introduction
	Computational Model
		Single Dental Implant
		Boundary Conditions
	Algorithm Description
		Numerical Discretization
		Mechanical Analysis
		Bone Remodeling
	Computational Analysis of Bone Remodeling
		Model 1
		Model 2
	Conclusions
	Acknowledgments
	References
21
Numerical Assessment of Bone Tissue Remodeling of a Proximal Femur After Insertion of a Femoral Implant Using an Interpola ...
	Introduction
	Bone Remodeling Model
		Preprocessing
		Mechanical Analysis
		Remodeling Points
		Phenomenological Law
	Bone Remodeling After THA
		Computational Model
		Prediction of Bone Remodeling
	Conclusions
	Acknowledgments
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z
Back Cover




نظرات کاربران