ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Analysis of Flame Retardancy In Polymer Science

دانلود کتاب تجزیه و تحلیل بازدارندگی شعله در علم پلیمر

Analysis of Flame Retardancy In Polymer Science

مشخصات کتاب

Analysis of Flame Retardancy In Polymer Science

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128240458, 9780128240458 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 470
[472] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 69 Mb 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Analysis of Flame Retardancy In Polymer Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجزیه و تحلیل بازدارندگی شعله در علم پلیمر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تجزیه و تحلیل بازدارندگی شعله در علم پلیمر

تحلیل تاخیر در شعله در علم پلیمر یک کتاب علمی/عملی است که برای دانشجویان، محققان اولیه و مهندسان جوان مفهوم‌سازی، طراحی و نوشته شده است تا اصول اولیه تجزیه و تحلیل آتش را توضیح دهد. /روش‌ها/روش‌های مشخص‌سازی، از اشتعال‌پذیری، اشتعال و گسترش آتش گرفته تا همرفت اجباری و تحلیل‌های مرتبط و برای روشن کردن مکانیسم‌های زیربنایی کاهش شعله در فازهای گازی و متراکم و به دنبال آن همبستگی بین تجزیه و تحلیل آتش در مقیاس آزمایشگاهی و واقعی و همچنین آتش سوزی. تجزیه و تحلیل از دیدگاه صنعتی این کتاب همچنین منبعی ضروری برای شناسایی و نصب آخرین دستاوردها در روش‌های تجزیه و تحلیل/شخصیت‌یابی آتش به منظور چارچوب‌بندی اثرات استراتژی‌های ارزیابی آتش‌سوزی است که برای تحقیق و توسعه مورد استفاده قرار می‌گیرد. این کتاب همچنین توصیف گسترده ای از تجزیه و تحلیل آتش مربوط به استانداردها و مقررات مختلف برای کاربردهای مختلف در مناطق مختلف جغرافیایی ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

Analysis of Flame Retardancy in Polymer Science is a scientific/practical book that is conceptualized, designed, and written for students, early-career researchers, and junior engineers to explain the basic principles of fire analysis/characterization methods/methodologies, from flammability, ignition, and fire spread to forced convection and related analyses and to elucidate the mechanisms underlying flame retardancy in both gas and condensed phases followed by correlation between laboratory- and real-scale fire analyses as well as fire analysis from an industrial standpoint. This book is also an indispensable resource for identifying and mounting the latest achievements in fire analysis/characterization methods to frame the effects of fire evaluation strategies to be utilized for research and development. The book also gives a broad description of fire analysis related to different standards and regulations for different applications in different geographic zones.



فهرست مطالب

Front Cover
Analysis of Flame Retardancy in Polymer Science
Copyright
Contents
Contributors
Preface
Chapter 1: Fundamentals: Flammability, ignition, and fire spread in polymers
	1. Introduction
		1.1. Polymers and the fire triangle
		1.2. Glossary of terms
	2. Thermal transitions, thermoplasticity, and geometric effects
		2.1. Thermophysical effects
		2.2. Thermally thin versus thermally thick materials
		2.3. Effect of sample geometry, orientation, and physical structure
	3. Fuel-forming reactions: Polymer pyrolysis and ignition
		3.1. Thermal degradation or pyrolysis
		3.2. Pyrolysis of individual polymer types
			3.2.1. Thermoplastics
				3.2.1.1. Polyolefins
				3.2.1.2. Aliphatic polyamides
				3.2.1.3. Polyesters
				3.2.1.4. Aliphatic (bio)polyesters
				3.2.1.5. Polyacrylonitrile
				3.2.1.6. Polystyrene
				3.2.1.7. Poly(vinyl chloride) (PVC)
				3.2.1.8. Ethylene-vinyl acetate copolymers
				3.2.1.9. Poly(methyl methacrylate) (PMMA)
			3.2.2. Foams
			3.2.3. Thermosets
				3.2.3.1. Polyester resins
				3.2.3.2. Vinyl ester resins
				3.2.3.3. Epoxy resins
				3.2.3.4. Phenolic resins
				3.2.3.5. Maleimide and polyimide resins
			3.2.4. Natural polymers
				3.2.4.1. Cellulose
				3.2.4.2. Lignin
				3.2.4.3. Protein polymers
			3.2.5. High-temperature-resistant polymers
	4. Oxidative degradation
	5. Combustion and fire spread: Effect of incident heat flux
		5.1. Ignition
		5.2. Effect of heat flux
		5.3. Smoke
	6. Flame retardance: Effect of flame retardants on ignition, combustion, and smoke generation
		6.1. Flame-retardant types and characteristics
		6.2. Synergism, additivity, and antagonism
		6.3. Environmental challenges and the potential for nanotechnology FR developments
	7. General appraisal of pyrolysis/ignition/burn versus reaction-to-fire test methodologies
		7.1. Simple ignition-based tests
		7.2. Reaction-to-fire tests
		7.3. Smoke tests
		7.4. Exemplar larger-scale, reaction-fire tests
	8. Conclusions and future perspectives
	References
Chapter 2: Forced combustion: Cone calorimetry
	1. Introduction
	2. The forced-combustion environment
	3. Additional instrumentation
	4. Using the data
		4.1. Simple methods
		4.2. Data for modeling
	5. Conclusions
	Acknowledgment
	References
Chapter 3: Microscale forced combustion: Pyrolysis-combustion flow calorimetry (PCFC)
	1. Introduction
	2. PCFC description
	3. Study of pyrolysis
		3.1. Combining PCFC and TGA
		3.2. Activation energy for pyrolysis
		3.3. Interactions in solid phase
		3.4. Aerobic pyrolysis-Thermo-oxidation
	4. Combustion
		4.1. Incomplete combustion in PCFC by controlling the combustor temperature
		4.2. Monitoring the residence time in combustor
		4.3. Coupling PCFC with gas analyzers
		4.4. Monitoring the fuel/oxygen ratio
	5. Prediction of flammability data
		5.1. Predicting the flammability of polymeric structures
		5.2. Predicting the temperature of solid surface at ignition from PCFC
		5.3. Correlations with fire tests
		5.4. Milligram-scale flame calorimetry (MFC)
	6. Concluding remarks and future perspectives
	Acknowledgments
	References
Chapter 4: Evaluation of gas phase: Mechanisms and analyses
	1. Introduction
	2. Types of gas-phase mechanism
	3. Common analytical tools for gas-phase mechanism evaluation
		3.1. Thermogravimetry-infrared spectroscopy (TG-FTIR)/mass spectrometry (MS) coupled analysis
		3.2. Direct insertion probe-mass spectrometry (DIP-MS)
		3.3. Pyrolysis-gas chromatography coupled technique
		3.4. Microscale combustion calorimeter (MCC) and its variations
		3.5. Cone calorimeter
		3.6. Detection of phosphorus-based gas-phase reactive species
			3.6.1. Molecular beam mass spectrometry (MBMS) with a flame source
			3.6.2. Chemiluminescence and laser-induced fluorescence (LIF) spectroscopy of flames
			3.6.3. VUV photoionization
	4. Concluding remarks and future perspectives
	Acknowledgment
	References
Chapter 5: Evaluation of gas phase: Smoke and toxicity analysis
	1. Introduction
	2. Smoke contents
		2.1. Gaseous fire effluents
		2.2. Solid and liquid fire effluents
	3. Analysis of smoke
		3.1. Smoke opacity
			3.1.1. Principle
			3.1.2. Standardized methods
				3.1.2.1. Optical density and smoke extinction coefficient
				3.1.2.2. Other smoke parameters
		3.2. Smoke gases concentrations
			3.2.1. Principle
			3.2.2. Standardized methods to generate and analyze fire effluents
	4. Impacts of smoke
		4.1. Visibility through smoke
		4.2. Smoke inhalation
			4.2.1. Acute toxicity vs chronic toxicity
			4.2.2. Acute toxicity to people
				4.2.2.1. General comments
				4.2.2.2. Tenability models
				4.2.2.3. Lethality models
			4.2.3. Sub-acute and chronic toxicity to people
			4.2.4. Toxicity from fire aerosols
		4.3. Environmental effects
	5. Conclusions and perspectives
	References
Chapter 6: Evaluation of condensed phase: Char/residue analysis
	1. Introduction
	2. Fundamentals of char and residue formation
		2.1. Ceramization
		2.2. Intumescence
		2.3. Physical barrier (nanocomposite)
		2.4. Charring
	3. Chemical characterization: Chemical composition
		3.1. Fourier transform infrared spectroscopy (FTIR)
		3.2. Raman spectroscopy
		3.3. X-ray photoelectron spectroscopy (XPS)
		3.4. X-ray diffraction (XRD)
		3.5. Solid-state nuclear magnetic resonance (ssNMR)
		3.6. Electron spin resonance (ESR)
	4. Microscopy: Morphology of the residue
		4.1. Scanning electron microscopy (SEM)
		4.2. Electron probe micro-analysis (EPMA)
		4.3. Transmission electron microscopy (TEM)
		4.4. X-ray computed tomography (CT)
	5. Dynamics of char/residue formation
		5.1. Viscosity
		5.2. Deformation and expansion
	6. Conclusions and future trends
	References
Chapter 7: Analysis of fire resistance of materials
	1. Introduction
	2. Definitions and application of fire resistance
		2.1. Concept of fire resistance
		2.2. Fire resistance evaluation-Experimental and modeling characterization
		2.3. Influence of fire resistance objectives on human behavior
	3. Material applications of fire resistance
		3.1. Non-combustible materials
		3.2. Combustible materials
	4. Conventional approach of fire resistance
		4.1. General principles
		4.2. Building application
			4.2.1. Fire resistance of structures
			4.2.2. Fire resistance of compartmentation
			4.2.3. Fire resistance of ventilation and smoke extraction elements
				4.2.3.1. Ventilation elements and products: Ducts and dampers
				4.2.3.2. Smoke extraction components and products
			4.2.4. Special cases in fire resistance
		4.3. Transport application
			4.3.1. Fire resistance in automotive and road
			4.3.2. Fire resistance in the railway domain
			4.3.3. Fire resistance in marine transport
			4.3.4. Fire resistance in aeronautical transport
		4.4. Outside Europe
		4.5. Limits of the conventional approach
	5. Performance approach
		5.1. Fire dynamics for fire resistance
			5.1.1. Basic approach-Zone models for non-standard temperature curves
			5.1.2. Growth phase (two-zone model)
			5.1.3. Steady-state phase (one-zone model)
			5.1.4. Open factor approach (simple formula)
			5.1.5. Detailed approach-Fields model for non-standard temperature curve
		5.2. Fire analysis applied to structural analysis
		5.3. Thermal analysis
		5.4. Experimental approach using large-scale and real-scale tests
			5.4.1. The source of fire
			5.4.2. The constraint to the structure
		5.5. Structural fire engineering
			5.5.1. General principles
			5.5.2. Structural fire safety engineering
			5.5.3. Example of application
	6. Conclusions and perspectives
	Acknowledgments
	References
Chapter 8: Characterization of high-temperature polymers for extreme environments
	1. Introduction
	2. High-temperature polymers
		2.1. High-temperature thermosets
			2.1.1. Phenolics and polybenzoxazine (PBz)
			2.1.2. Polyimides (PI)
			2.1.3. Cyanate ester
			2.1.4. Phthalonitriles (PN)
		2.2. High-temperature thermoplastics
			2.2.1. Polyetheretherketone (PEEK)
			2.2.2. Polyetherketoneketone (PEKK)
			2.2.3. Polyetherimide (PEI)
	3. Aerothermal ablation testing for high-temperature applications
		3.1. Oxyacetylene test bed (OTB)
		3.2. Simulated solid rocket motor (SSRM)
		3.3. Subscale solid rocket motor (char motor)
		3.4. LHMEL test facilities
		3.5. ICP test facilities
		3.6. Arc jet test facilities
			3.6.1. Arc jet
			3.6.2. Test condition in the arc jet
			3.6.3. Facility to flight and test design
	4. Concluding remarks
	References
Chapter 9: Correlation between laboratory- and real-scale fire analyses
	1. Introduction
		1.1. From microscale to small scale
		1.2. Correlations between small-scale tests
		1.3. From small-scale tests to intermediate- or large-scale tests
	2. Case study no. 1: Fire behavior of PMMA
		2.1. Flammability at microscale
		2.2. From small to intermediate scales
			2.2.1. Influence of heat absorption
			2.2.2. Effect of the sample orientation
			2.2.3. Effect of the sample surface area
			2.2.4. Effect of the sample thickness
		2.3. Interactions at large scale
		2.4. Conclusion
	3. Case study no. 2: Electric cable tray fires
		3.1. Assessment of the pHRR of horizontal cable tray fires
		3.2. Assessment of the HRR of horizontal cable tray fires
		3.3. Conclusion
	4. Case study no. 3: Wildfires
		4.1. The need for flame retardants research in wildfires science
		4.2. Scales in wildfires
		4.3. Experimental tests in wildfire research
			4.3.1. Laboratory scale
			4.3.2. Small scale
			4.3.3. Medium scale
			4.3.4. Large scale
		4.4. Linking small-scale, large-scale, and real-scale tests
		4.5. Strategies for upscaling wildfire dynamics
		4.6. Rothermel model
		4.7. Limitations
		4.8. Conclusions
		References
Chapter 10: Fire analysis tests from industrial point of view
	1. Fundamental principles
	2. Scenario-based approach
		2.1. Criteria
		2.2. Safety objectives
		2.3. Materials, products, and systems problematics
		2.4. Reference scenarios
			2.4.1. Reaction to fire
			2.4.2. Fire resistance
	3. Building products
		3.1. Europe
			3.1.1. EU construction products regulation
			3.1.2. Reaction to fire
				3.1.2.1. Test methods
					3.1.2.1.1. Small flame test
					3.1.2.1.2. Single burning item (SBI)
					3.1.2.1.3. Flooring test
					3.1.2.1.4. Calorific value
					3.1.2.1.5. Non-combustibility test
				3.1.2.2. Classifications
					3.1.2.2.1. Products excluding floors
					3.1.2.2.2. Floor products
			3.1.3. Fire resistance
				3.1.3.1. Test methods
				3.1.3.2. Classifications
		3.2. North America
			3.2.1. Reaction to fire
				3.2.1.1. Small scale
					3.2.1.1.1. Burning rate of plastics
					3.2.1.1.2. Ignition temperature of plastics
					3.2.1.1.3. Flammability of carpets and rugs
					3.2.1.1.4. Potential heat
					3.2.1.1.5. Smoke density from plastics
					3.2.1.1.6. Critical flux
					3.2.1.1.7. Cone calorimeter
				3.2.1.2. Flame spread
					3.2.1.2.1. Steiner tunnel test
					3.2.1.2.2. Room corner test
				3.2.1.3. Summary of reaction-to-fire test methods
			3.2.2. Fire resistance
			3.2.3. Others
		3.3. Other building products
			3.3.1. Facades
			3.3.2. Roofs
			3.3.3. Curtains
			3.3.4. Upholstery/furnishing
			3.3.5. Smoldering
	4. Cables
		4.1. Europe
			4.1.1. Cables as CPR and reference scenarios
			4.1.2. Reaction to fire
				4.1.2.1. Test methods
					4.1.2.1.1. Small flame test
					4.1.2.1.2. Cable ladder test
					4.1.2.1.3. Smoke cabinet
					4.1.2.1.4. Smoke acidity
				4.1.2.2. Classifications
			4.1.3. Fire resistance
				4.1.3.1. Test methods
					4.1.3.1.1. Small cables (PHca classification for the cable)
					4.1.3.1.2. Fire resistance test for unprotected electric cables (Pca classification for the cable)
					4.1.3.1.3. Fire resistance test of protective systems for cables systems (P classification for the protection)
					4.1.3.1.4. Cable management systems (CMS) for fire resistant installations
					4.1.3.1.5. Communication cables
					4.1.3.1.6. Optical fibers
				4.1.3.2. Classification
		4.2. Others
			4.2.1. Reaction to fire
			4.2.2. Fire resistance
	5. Electrotechnical products
		5.1. Principle
		5.2. Main test methods
			5.2.1. Glow wire test
			5.2.2. Needle burner
			5.2.3. 50W and 500W flame tests
	6. Others
		6.1. UL94
		6.2. Heat release rate measurements
			6.2.1. Cone calorimeter
			6.2.2. Flame propagation apparatus
		6.3. Smoke corrosivity
	7. Transportation
		7.1. Road transportation field
			7.1.1. Regulatory provisions for the choice of materials
			7.1.2. Other requirements
		7.2. Rail transportation field
			7.2.1. European system
				7.2.1.1. History
				7.2.1.2. EU interoperability directive and technical specifications for interoperability
				7.2.1.3. EN 45545 standards series
					7.2.1.3.1. Part 1: General
					7.2.1.3.2. Part 2: Requirements for fire behavior of materials and components
						Principle
						Main test methods
							Propagation and flammability tests
						Test relating to the evaluation of the heat output
						Test relating to the determination of the smoke opacity
						Test relating to the evaluation of the smoke toxicity
						Special case of seats
					7.2.1.3.3. Part 3: Fire resistance requirements for fire protection elements and partitions
					7.2.1.3.4. Part 4: Fire safety requirements for the design of railway vehicles
					7.2.1.3.5. Part 5: Safety requirements for electrical equipment
					7.2.1.3.6. Part 6: Fire control and management system
					7.2.1.3.7. Part 7: Fire safety requirements for installations of flammable liquids and flammable gases
				7.2.1.4. New approaches-Fire safety engineering
				7.2.1.5. Summary of main methods from EN 45545-2 [17] and EN 45545-3 [207]
			7.2.2. North American system
				7.2.2.1. Principle
				7.2.2.2. Test methods
					7.2.2.2.1. Ignitability-flame spread
					7.2.2.2.2. Smoke opacity
				7.2.2.3. Summary of main methods
			7.2.3. UIC regulation
		7.3. Marine field
			7.3.1. Principles
			7.3.2. SOLAS convention and FTP code
			7.3.3. Descriptive regulation
				7.3.3.1. Passive fire protection
					7.3.3.1.1. Reaction-to-fire tests
					7.3.3.1.2. Fire resistance tests
						Principles and requirements
						Tests carried out
				7.3.3.2. Active fire protection
				7.3.3.3. Special case of high-speed crafts
			7.3.4. New approaches-Alternative design
			7.3.5. Summary of main methods
		7.4. Aeronautical field
			7.4.1. Principle
			7.4.2. Tests for qualification of materials (reaction-to-fire tests)
				7.4.2.1. Ignitability and flame spread
				7.4.2.2. Heat release rate
				7.4.2.3. Smoke opacity
				7.4.2.4. Smoke toxicity
			7.4.3. System qualification tests
				7.4.3.1. Tests on seats
				7.4.3.2. Tests on cargo hold panels
				7.4.3.3. ``Burnthrough´´ test
			7.4.4. Summary of main methods
	8. Conclusions and perspectives
	References
Index
Back Cover




نظرات کاربران