ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Modern classical homotopy theory

دانلود کتاب نظریه هموتوپی کلاسیک مدرن

Modern classical homotopy theory

مشخصات کتاب

Modern classical homotopy theory

ویرایش:  
نویسندگان:   
سری: GSM127 
ISBN (شابک) : 9780821852866 
ناشر: AMS 
سال نشر: 2011 
تعداد صفحات: 863 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 مگابایت 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Modern classical homotopy theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه هموتوپی کلاسیک مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نظریه هموتوپی کلاسیک مدرن

هسته نظریه هموتوپی کلاسیک مجموعه ای از ایده ها و قضایا است که در دهه 1950 پدیدار شد و بعدها تا حد زیادی در مفهوم مقوله مدل مدون شد. این هسته شامل مفاهیم فیبراسیون و کوفیبراسیون است. مجتمع های CW; توالی فیبر و کوفایبر بلند؛ فضاهای حلقه و تعلیق؛ و غیره قضایای بازنمایی پذیری براون نشان می دهد که همسانی و همومولوژی نیز در نظریه هموتوپی کلاسیک موجود است. این متن نظریه هموتوپی کلاسیک را از دیدگاه مدرن توسعه می‌دهد، به این معنی که شرح از نظریه مقوله‌های مدل مطلع می‌شود و محدودیت‌ها و مجموع هموتوپی نقش اصلی را ایفا می‌کنند. این توضیح با این اصل هدایت می شود که به طور کلی ترجیح داده می شود که نتایج توپولوژیکی را با استفاده از توپولوژی (به جای جبر) اثبات کند. زبان و نظریه اولیه حدود و حدود هموتوپی این امکان را فراهم می کند که فقط با مبانی جبر به عمق موضوع نفوذ کرد. متن به قلمرو پیشرفته‌ای می‌رسد، از جمله جبر استین‌رود، تناوب بات، محلی‌سازی، قضیه توان کوهن، مور، و نایزندوفر، و قضیه میلر در مورد حدس سالیوان. بنابراین به خواننده ابزارهای لازم برای درک و مشارکت در تحقیق در (بخشی از) مرز فعلی نظریه هموتوپی داده می شود. مدارک به طور کامل ارائه نمی شود. بلکه در قالب مجموعه مسائل جهت دار ارائه می شوند. از نظر کارشناس، اینها به عنوان شواهدی کوتاه خوانده می شود. برای تازه کارها چالش هایی هستند که آنها را به خود جذب می کند و به آنها کمک می کند تا استدلال ها را به طور کامل درک کنند.


توضیحاتی درمورد کتاب به خارجی

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.



فهرست مطالب

Preface

     History

     The Aim of This Book.

     Omissions

     Problems and Exercises

     Audience

     Teaching from This Book

     Acknowledgements.


Part 1  The Language of Categories

     
Chapter 1  Categories and Functors

          1.1. Diagrams

          1.2. Categories

          1.3. Functors

          1.4. Natural Transformations

          1.5. Duality

          1.6. Products and Sums

          1.7. Initial and Terminal Objects

          1.8. Group and Cogroup Objects

          1.9. Homomorphisms

          1.10. Abelian Groups and Cogroups

          1.11. Adjoint Functors

     
Chapter 2  Limits and Colimits

          2.1. Diagrams and Their Shapes

          2.2. Limits and Colimits

          2.3. Naturality of Limits and Colimits

          2.4. Special Kinds of Limits and Colimits

               2.4.1. Pullback

               2.4.2. Pushout.

               2.4.3. Telescopes and Towers.

          2.5. Formal Properties of Pushout and Pullback Squares



Part 2  Semi-Formal Homotopy Theory

     
Chapter 3  Categories of Spaces

          3.1. Spheres and Disks

          3.2. CW Complexes

               3.2.1. CW Complexes and Cellular Maps

               3.2.2. Some Topology of CW Complexes.

               3.2.3. Products of CW Complexes

          3.3. Example: Projective Spaces

               3.3.1. Projective Spaces.

               3.3.2. Cellular Decomposition of FP^n.

          3.4. Topological Spaces

               3.4.1. Mapping Spaces.

               3.4.2. The Category of Unpointed Spaces

          3.5. The Category of Pairs

          3.6. Pointed Spaces

               3.6.1. Pointed Mapping Spaces.

               3.6.2. Products of Pointed Spaces

               3.6.3. The Category of Pointed Spaces

          3.7. Relating the Categories of Pointed and Unpointed Spaces

               3.7.1. Various Pointed and Unpointed Products.

               3.7.2. Some Mixed Adjunctions

          3.8. Suspension and Loop

               3.8.1. Suspension

               3.8.2. Loop Spaces

          3.9. Additional Problems and Projects

     
Chapter 4  Homotopy

          4.1. Homotopy of Maps

               4.1.1. The Deformation Approach.

               4.1.2. Adjoint Definition of Homotopy

               4.1.3. Homotopies of Paths.

               4.1.4. Composing and Inverting Homotopies

          4.2. Constructing Homotopies

               4.2.1. Straight-Line Homotopy

               4.2.2. Pushing a Map off of a Cell.

               4.2.3. Pushing a Path off the Disk.

               4.2.4. Cellular Approximation for 1-Dimensional Domains

               4.2.5. Maps of Products.

          4.3. Homotopy Theory

               4.3.1. The Homotopy Category

               4.3.2. Contractible Spaces and Nullhomotopic Maps

          4.4. Groups and Cogroups in the Homotopy Category

          4.5. Homotopy Groups

          4.6. Homotopy and Duality

          4.7. Homotopy in Mapping Categories

               4.7.1. The Category of Maps

               4.7.2. Weaker Notions of Homotopy Equivalence for Maps

               4.7.3. Spaces under A or over B.

               4.7.4. Pushouts and Pullbacks as Functors.

               4.7.5. Maps into CW Pairs, Triples, etc.

          4.8. Additional Problems

     
Chapter 5  Cofibrations and Fibrations

          5.1. Cofibrations

               5.1.1. The Homotopy Extension Property.

               5.1.2. Point-Set Topology of Cofibrations

               5.1.3. Two Reformulations.

               5.1.4. Cofibrations and Pushouts.

          5.2. Special Properties of Cofibrations of Spaces

               5.2.1. The Power of a Parametrized Cylinder

               5.2.2. Mapping Spaces into Cofibrations

               5.2.3. Products and Cofibrations

          5.3. Fibrations

               5.3.1. Dualizing Cofibrations

               5.3.2. Some Examples

               5.3.3. Pullbacks of Fibrations

          5.4. Factoring through Cofibrations and Fibrations

               5.4.1. Mapping Cylinders.

               5.4.2. Converting a Map to a Fibration.

          5.5. More Homotopy Theory in Categories of Maps

               5.5.1. Mapping Cylinders in Mapping Categories.

               5.5.2. Homotopy Inverses for Pointwise Equivalences

          5.6. The Fundamental Lifting Property

               5.6.1. The Case i is a Homotopy Equivalence.

               5.6.2. Relative Homotopy Lifting

               5.6.3. The Case p is a Homotopy Equivalence

               5.6.4. Mutual Characterization of Fibrations and Cofibrations

               5.6.5. Some Consequences of the Mutual Characterization

          5.7. Pointed Cofibrations and Fibrations

          5.8. Well-Pointed Spaces

               5.8.1. Well-Pointed Spaces

               5.8.2. Cofibrations and Fibrations of Well-Pointed Spaces

               5.8.3. Double Factorizations.

               5.8.4. The Fundamental Lifting Property

          5.9. Exact Sequences, Cofibers and Fibers

               5.9.1. Exact Sequences in Homotopy Theory.

               5.9.2. The Cofiber of a Map.

               5.9.3. The Fiber of a Map

               5.9.4. Cofibers of Maps out of Contractible Spaces

          5.10. Mapping Spaces

               5.10.1. Unpointed Mapping Spaces

               5.10.2. Pointed Maps into Pointed Fibrations.

               5.10.3. Applications

          5.11. Additional Topics, Problems and Projects

               5.11.1. Homotopy Equivalences in A | T | B

               5.11.2. Comparing Pointed and Unpointed Homotopy Classes

               5.11.3. Problems

     
Chapter 6  Homotopy Limits and Colimits

          6.1. Homotopy Equivalence in Diagram Categories

          6.2. Cofibrant Diagrams

               6.2.1. Cofibrant Diagrams

               6.2.2. An Instructive and Important Example

               6.2.3. Cofibrant Replacements of Diagrams

          6.3. Homotopy Colimits of Diagrams

               6.3.1. The Homotopy Colimit of a Diagram.

               6.3.2. Induced Maps of Homotopy Colimits

               6.3.3. Example: Induced' Maps Between Suspensions

               6.3.4. The Functorial Approach to Homotopy Colimits.

          6.4. Constructing Cofibrant Replacements

               6.4.1. Simple Categories

               6.4.2. Recognizing Cofibrant Diagrams.

               6.4.3. Colimits of Well-Pointed Spaces

               6.4.4. Existence of Cofibrant Replacements

          6.5. Examples: Pushouts, 3 x 3s and Telescopes

               6.5.1. Homotopy Pushouts

               6.5.2. Telescopes

               6.5.3. 3 x 3 Diagrams

          6.6. Homotopy Limits

               6.6.1. Fibrant Diagrams of Unpointed Spaces

               6.6.2. Homotopy Limits.

               6.6.3. Existence of Fibrant Replacements

               6.6.4. Homotopy Limits of Pointed Spaces.

               6.6.5. Special Cases: Maps, Pullbacks, 3 x 3s and Towers

          6.7. Functors Applied to Homotopy Limits and Colimits

               6.7.1. The Unpointed Case.

               6.7.2. The Pointed Case.

               6.7.3. Contravariant Functors

          6.8. Homotopy Colimits of More General Diagrams

          6.9. Additional Topics, Problems and Projects

               6.9.1. Rigidifying Homotopy Morphisms of Diagrams

               6.9.2. Homotopy Colimits versus Categorical Colimits

               6.9.3. Homotopy Equivalence in Mapping Categories

               6.9.4. Problems and Projects

     
Chapter 7  Homotopy Pushout and Pullback Squares

          7.1. Homotopy Pushout Squares

          7.2. Recognition and Completion

               7.2.1. Recognition.

               7.2.2. Completion

          7.3. Homotopy Pullback Squares

          7.4. Manipulating Squares

               7.4.1. Composition of Squares.

               7.4.2. 3 x 3 Diagrams.

               7.4.3. Application of Functors

          7.5. Characterizing Homotopy Pushout and Pullback Squares

          7.6. Additional Topics, Problems and Projects

               7.6.1. Cartesian and Cocartesian Cubes.

               7.6.2. Problems.

     
Chapter 8  Tools and Techniques

          8.1. Long Cofiber and Fiber Sequences

               8.1.1. The Long Cofiber Sequence of a Map.

               8.1.2. The Long Fiber Sequence of a Map

          8.2. The Action of Paths in Fibrations

               8.2.1. Admissible Maps

          8.3. Every Action Has an Equal and Opposite Coaction

               8.3.1. Coactions in Cofiber Sequences

               8.3.2. A Diagram Lemma.

               8.3.3. Action of \OmegaY on F.

          8.4. Mayer-Vietoris Sequences

          8.5. The Operation of Paths

          8.6. Fubini Theorems

          8.7. Iterated Fibers and Cofibers

          8.8. Group Actions

               8.8.1. G-Spaces and G-Maps

               8.8.2. Homotopy Theory of Group Actions.

               8.8.3. Homotopy Colimits of Pointed G-Actions.

     
Chapter 9  Topics and Examples

          9.1. Homotopy Type of Joins and Products

               9.1.1. The Join of Two Spaces.

               9.1.2. Splittings of Products.

               9.1.3. Products of Mapping Cones

               9.1.4. Whitehead Products

          9.2. H-Spaces and co-H-Spaces

               9.2.1. H-Spaces

               9.2.2. Co-H-Space

               9.2.3. Maps from Co-H-Spaces to H-Spaces

          9.3. Unitary Groups and Their Quotients

               9.3.1. Orthogonal, Unitary and Symplectic Groups

               9.3.2. Topology of Unitary Groups and Their Quotients

               9.3.3. Cellular Structure for Unitary Groups.

          9.4. Cone Decompositions

               9.4.1. Cone Decompositions

               9.4.2. Cone Decompositions of Products.

               9.4.3. Boundary Maps for Products

               9.4.4. Generalized CW Complexes

          9.5. Introduction to Phantom Maps

               9.5.1. Maps out of Telescopes

               9.5.2. Inverse Limits and lim' for Groups.

               9.5.3. Mapping into a Limit.

          9.6. G. W. Whitehead's Homotopy Pullback Square

          9.7. Lusternik-Schnirelmann Category

               9.7.1. Basics of Lusternik-Schnirelmann Category

               9.7.2. Lusternik-Schnirelmann Category of CW Complexes

               9.7.3. The Ganea Criterion for L-S Category

               9.7.4. Category and Products

          9.8. Additional Problems and Projects

     
Chapter 10  Model Categories

          10.1. Model Categories

          10.2. Left and Right Homotopy

          10.3. The Homotopy Category of a Model Category

          10.4. Derived Functors and Quillen Equivalence

               10.4.1. Derived Functors

               10.4.2. Quillen Equivalence of Model Categories

          10.5. Homotopy Limits and Colimits

               10.5.1. A Model Structure for Diagram Categories.

               10.5.2. Homotopy Colimit.



Part 3  Four Topological Inputs

     
Chapter 11  The Concept of Dimension in Homotopy Theory

          11.1. Induction Principles for CW Complexes

               11.1.1. Attaching One More Cell.

               11.1.2. Composing Infinitely Many Homotopies

          11.2. n-Equivalences and Connectivity of Spaces

               11.2.1. n-Equivalences

          11.3. Reformulations of n-Equivalences

               11.3.1. Equivalence of the (a) Parts

               11.3.2. Equivalence of Parts (2) (a) and (2) (b).

               11.3.3. Proof that Part (2) (b) Implies Part (3) (b).

               11.3.4. Proof that Part (3) (b) Implies Part (1) (b).

          11.4. The J. H. C. Whitehead Theorem

          11.5. Additional Problems

     
Chapter 12  Subdivision of Disks

          12.1. The Seifert-Van Kampen Theorem

          12.2. Simplices and Subdivision

               12.2.1. Simplices and Their Boundaries

               12.2.2. Finite Simplicial Complexes

               12.2.3. Barycentric Subdivision.

          12.3. The Connectivity of Xn ---> X

          12.4. Cellular Approximation of Maps

          12.5. Homotopy Colimits and n-Equivalences

               12.5.1. Homotopy Pushouts.

               12.5.2. Telescope Diagrams

          12.6. Additional Problems and Projects

     
Chapter 13  The Local Nature of Fibrations

          13.1. Maps Homotopy Equivalent to Fibrations

               13.1.1. Weak Fibrations.

               13.1.2. Homotopy Pullbacks and Weak Fibrations

               13.1.3. Weak Homotopy Lifting

          13.2. Local Fibrations Are Fibrations

          13.3. Gluing Weak Fibrations

               13.3.1. Tabs and Glue.

               13.3.2. Gluing Weak Fibrations with Tabs.

          13.4. The First Cube Theorem

     
Chapter 14  Pullbacks of Cofibrations

          14.1. Pullbacks of Cofibrations

          14.2. Pullbacks of Well-Pointed Spaces

          14.3. The Second Cube Theorem

     
Chapter 15  Related Topics

          15.1. Locally Trivial Bundles

               15.1.1. Bundles and Fibrations.

               15.1.2. Example: Projective Spaces

          15.2. Covering Spaces

               15.2.1. Unique Lifting

               15.2.2. Coverings and the Fundamental Group

               15.2.3. Lifting Criterion.

               15.2.4. The Fundamental Group of S^1.

          15.3. Bundles Built from Group Actions

               15.3.1. Local Sections for Orbit Spaces.

               15.3.2. Stiefel Manifolds and Grassmannians

          15.4. Some Theory of Fiber Bundles

               15.4.1. Transition Functions.

               15.4.2. Structure Groups

               15.4.3. Change of Fiber and Principal Bundles.

          15.5. Serre Fibrations and Model Structures

               15.5.1. Serre Fibrations.

               15.5.2. The Serre-Quillen Model Structure.

          15.6. The Simplicial Approach to Homotopy Theory

               15.6.1. Simplicial Complexes.

               15.6.2. The Functorial Viewpoint

          15.7. Quasifibrations

          15.8. Additional Problems and Projects



Part 4  Targets as Domains, Domains as Targets

     
Chapter 16  Constructions of Spaces and Maps

          16.1. Skeleta of Spaces

               16.1.1. Formal Properties of Skeleta.

               16.1.2. Construction of n-Skeleta

          16.2. Connectivity and CW Structure

               16.2.1. Cells and n-Equivalences

               16.2.2. Connectivity and Domain-Type Constructions

          16.3. Basic Obstruction Theory

          16.4. Postnikov Sections

          16.5. Classifying Spaces and Universal Bundles

               16.5.1. The Simple Construction.

               16.5.2. Fixing the Topology

               16.5.3. Using EG for EH.

               16.5.4. Discrete Abelian Torsion Groups.

               16.5.5. What do Classifying Spaces Classify?

          16.6. Additional Problems and Projects

     
Chapter 17  Understanding Suspension

          17.1. Moore Paths and Loops

               17.1.1. Spaces of Measured Paths

               17.1.2. Composing Infinite Collections of Homotopies

          17.2. The Free Monoid on a Topological Space

               17.2.1. The James Construction

               17.2.2. The Algebraic Structure of the James Construction

          17.3. Identifying the Suspension Map

          17.4. The Freudenthal Suspension Theorem

          17.5. Homotopy Groups of Spheres and Wedges of Spheres

          17.6. Eilenberg-Mac Lane Spaces

               17.6.1. Maps into Eilenberg-Mac Lane Spaces

               17.6.2. Existence of Eilenberg-Mac Lane Spaces

          17.7. Suspension in Dimension 1

          17.8. Additional Topics and Problems

               17.8.1. Stable Phenomena

               17.8.2. The James Splitting

               17.8.3. The Hilton-Milnor Theorem

     
Chapter 18  Comparing Pushouts and Pullbacks

          18.1. Pullbacks and Pushouts

               18.1.1. The Fiber of $\psi$: Q ---> D

               18.1.2. Ganea's Fiber-Cofiber Construction.

          18.2. Comparing the Fiber of f to Its Cofiber

          18.3. The Blakers-Massey Theorem

          18.4. The Delooping of Maps

               18.4.1. The Connectivity of Looping

               18.4.2. The Kernel and Cokernel of Looping

          18.5. The n-Dimensional Blakers-Massey Theorem

               18.5.1. Blakers-Massey Theorem for n-Cubes

               18.5.2. Recovering X from \Sigma X.

          18.6. Additional Topics, Problems and Projects

               18.6.1. Blakers-Massey Exact Sequence of a Cofibration

               18.6.2. Exact Sequences of Stable Homotopy Groups

               18.6.3. Simultaneously Cofiber and Fiber Sequences

               18.6.4. The Zabrodsky Lemma

               18.6.5. Problems and Projects.

     
Chapter 19  Some Computations in Homotopy Theory

          19.1. The Degree of a Map S^n ---> S^n

               19.1.1. The Degree of a Reflection and the Antipodal Map

               19.1.2. Computation of Degree

          19.2. Some Applications of Degree

               19.2.1. Fixed Points and Fixed Point Free Maps

               19.2.2. Vector Fields on Spheres.

               19.2.3. The Milnor Sign Convention

               19.2.4. Fundamental Theorems of Algebra

          19.3. Maps Between Wedges of Spheres

          19.4. Moore Spaces

          19.5. Homotopy Groups of a Smash Product

               19.5.1. Algebraic Properties of the Smash Product.

               19.5.2. Nondegeneracy.

          19.6. Smash Products of Eilenberg-Mac Lane Spaces

          19.7. An Additional Topic and Some Problems

               19.7.1. Smashing Moore Spaces

               19.7.2. Problems

     
Chapter 20  Further Topics

          20.1. The Homotopy Category Is Not Complete

          20.2. Cone Decompositions with Respect to Moore Spaces

          20.3. First p-Torsion Is a Stable Invariant

               20.3.1. Setting Up

               20.3.2. Connectivity with Respect to P.

               20.3.3. P-Connectivity and Moore Spaces

               20.3.4. The First P-Torsion of a Smash Product

               20.3.5. P-Local Homotopy Theory

          20.4. Hopf Invariants and Lusternik-Schnirelmann Category

               20.4.1. Berstein-Hilton Hopf Invariants

               20.4.2. Stanley's Theorems on Compatible Sections

          20.5. Infinite Symmetric Products

               20.5.1. The Free Abelian Monoid on a Space

               20.5.2. Symmetric Products of Cofiber Sequences

               20.5.3. Some Examples.

               20.5.4. Symmetric Products and Eilenberg-Mac Lane Spaces.

          20.6. Additional Topics, Problems and Projects

               20.6.1. Self-Maps of Projective Spaces.

               20.6.2. Fiber of Suspension and Suspension of Fiber

               20.6.3. Complexes of Reduced Product Type.

               20.6.4. Problems and Projects



Part 5  Cohomology and Homology

     
Chapter 21  Cohomology

          21.1. Cohomology

               21.1.1. Represented Ordinary Cohomology

               21.1.2. Cohomology Theories.

               21.1.3. Cohomology and Connectivity.

               21.1.4. Cohomology of Homotopy Colimits.

               21.1.5. Cohomology for Unpointed Spaces

          21.2. Basic Computations

               21.2.1. Cohomology and Dimension.

               21.2.2. Suspension Invariance

               21.2.3. Exact Sequences

               21.2.4. Cohomology of Projective Spaces

          21.3. The External Cohomology Product

          21.4. Cohomology Rings

               21.4.1. Graded R-Algebras

               21.4.2. Internalizing the Exterior Product

               21.4.3. R-Algebra Structure

          21.5. Computing Algebra Structures

               21.5.1. Products of Spheres.

               21.5.2. Bootstrapping from Known Cohomology.

               21.5.3. Cohomology Algebras for Projective Spaces

          21.6. Variation of Coefficients

               21.6.1. Universal Coefficients

          21.7. A Simple Kunneth Theorem

          21.8. The Brown Representability Theorem

               21.8.1. Representing Homotopy Functors

               21.8.2. Representation of Cohomology Theories

               21.8.3. Representing a Functor on Finite Complexes

          21.9. The Singular Extension of Cohomology

          21.10. An Additional Topic and Some Problems and Projects

               21.10.1. Cohomology of BZ/n.

               21.10.2. Problems and Projects

     
Chapter 22  Homology

          22.1. Homology Theories

               22.1.1. Homology Theories

               22.1.2. Homology and Homotopy Colimits.

               22.1.3. The Hurewicz Theorem.

               22.1.4. Computation

          22.2. Examples of Homology Theories

               22.2.1. Stabilization of Maps.

               22.2.2. Ordinary Homology.

               22.2.3. Infinite Loop Spaces and Homology

          22.3. Exterior Products and the Kunneth Theorem for Homology

               22.3.1. The Exterior Product in Homology

          22.4. Coalgebra Structure for Homology

          22.5. Relating Homology to Cohomology

               22.5.1. Pairing Cohomology with Homology

               22.5.2. Nondegeneracy

          22.6. H-Spaces and Hopf Algebras

               22.6.1. The Pontrjagin Algebra of an H-Space

               22.6.2. Pontrjagin and Kiinneth.

               22.6.3. The Homology and Cohomology of an H-Space

     
Chapter 23  Cohomology Operations

          23.1. Cohomology Operations

          23.2. Stable Cohomology Operations

               23.2.1. The Same Operation in All Dimensions

               23.2.2. Extending an Operation to a Stable Operation.

               23.2.3. Cohomology of BZ/p.

          23.3. Using the Diagonal Map to Construct Cohomology Operations

               23.3.1. Overview

               23.3.2. The Transformation $\lamba$.

          23.4. The Steenrod Reduced Powers

               23.4.1. Unstable Relations

               23.4.2. Extending the pth Power to a Stable Operation

          23.5. The Adem Relations

               23.5.1. Steenrod Operations on Polynomial Rings

               23.5.2. The Fundamental Symmetry Relation

          23.6. The Algebra of the Steenrod Algebra

               23.6.1. Fundamental Properties of Steenrod Operations

               23.6.2. Modules and Algebras over A.

               23.6.3. Indecomposables and Bases

          23.7. Wrap-Up

               23.7.1. Delooping the Squaring Operation.

               23.7.2. Additional Problems and Projects

     
Chapter 24  Chain Complexes

          24.1. The Cellular Complex

               24.1.1. The Cellular Cochain Complex of a Space.

               24.1.2. Chain Complexes and Algebraic Homology

               24.1.3. Computing the Cohomology of Spaces via Chain Complexes.

               24.1.4. Chain Complexes for Homology Theories

               24.1.5. Uniqueness of Cohomology and Homology

          24.2. Applying Algebraic Universal Coefficients Theorems

               24.2.1. Constructing New Chain Complexes

               24.2.2. Universal Coefficients Theorems

          24.3. The General Kunneth Theorem

               24.3.1. The Cellular Complexes of a Product.

               24.3.2. Kunneth Theorems for Spaces.

          24.4. Algebra Structures on C*(X) and C(X)

          24.5. The Singular Chain Complex

     
Chapter 25  Topics, Problems and Projects

          25.1. Algebra Structures on R^n and C^n

          25.2. Relative Cup Products

               25.2.1. A New Exterior Cup Product

               25.2.2. Lusternik-Schnirelmann Category and Products.

          25.3. Hopf Invariants and Hopf Maps

               25.3.1. The Hopf Invariant Is a Homomorphism.

               25.3.2. The Hopf Construction

               25.3.3. Hopf Invariant One

               25.3.4. Generalization.

          25.4. Some Homotopy Groups of Spheres

               25.4.1. The Group \pi_n+1(S^n)

               25.4.2. Composition of Hopf Maps.

          25.5. The Borsuk-Ulam Theorem

          25.6. Moore Spaces and Homology Decomposi

               25.6.1. Homology of Moore Spaces

               25.6.2. Cohomology Operations in Moore Spaces

               25.6.3. Maps Between Moore Spaces

               25.6.4. Homology Decompositions.

          25.7. Finite Generation of \pi_n(X), and Hn(X)

          25.8. Surfaces

          25.9. Euler Characteristic

               25.9.1. Independence of the Field

               25.9.2. Axiomatic Characterization of Euler Characteristic.

               25.9.3. Poincare Series

               25.9.4. More Examples.

          25.10. The Kunneth Theorem via Symmetric Products

          25.11. The Homology Algebra of \Omega \Sigma X

          25.12. The Adjoint \lambda_X of id_\omega X

          25.13. Some Algebraic Topology of Fibrations

          25.14. A Glimpse of Spectra

          25.15. A Variety of Topics

               25.15.1. Contractible Smash Products

               25.15.2. Phantom Maps

               25.15.3. The Serre Exact Sequence

               25.15.4. The G. W. Whitehead Exact Sequences

               25.15.5. Hopf Algebra Structure on the Steenrod Algebra

          25.16. Additional Problems and Projects



Part 6  Cohomology, Homology and Fibrations

     
Chapter 26  The Wang Sequence

          26.1. Trivialization of Fibrations

          26.2. Orientable Fibrations

          26.3. The Wang Cofiber Sequence

               26.3.1. Fibrations over a Suspension

               26.3.2. The Wang Exact Sequence

               26.3.3. Proof of Theorem 26.10(a).

               26.3.4. Proof of Theorem 26.10(b).

          26.4. Some Algebraic Topology of Unitary Groups

               26.4.1. The Cohomology of the Unitary Groups.

               26.4.2. The Homology Algebra of the Unitary Groups

               26.4.3. Cohomology of the Special Unitary Group

               26.4.4. Cohomology of the Stiefel Manifolds

          26.5. The Serre Filtration

               26.5.1. The Fundamental Cofiber Sequence

               26.5.2. Pullbacks over a Cone Decomposition of the Base

          26.6. Additional Topics, Problems and Projects

               26.6.1. Clutching

               26.6.2. Orthogonal and Symplectic Groups

               26.6.3. The Homotopy Groups of S^3.

     
Chapter 27  Cohomology of Filtered Spaces

          27.1. Filtered Spaces and Filtered Groups

               27.1.1. Subquotients and Correspondence

               27.1.2. Filtered Spaces.

               27.1.3. Filtered Algebraic Gadgets.

               27.1.4. Linking Topological and Algebraic Filtrations

               27.1.5. The Functors Gr* and Gr*

               27.1.6. Convergence

               27.1.7. Indexing of Associated Graded Objects

          27.2. Cohomology and Cone Filtrations

               27.2.1. Studying Cohomology Using Filtrations

               27.2.2. Approximating Z^n,m and B^s,n.

          27.3. Approximations for General Filtered Spaces

               27.3.1. Algebraic Repackaging

               27.3.2. Algebraic Homology and Exact Couples

               27.3.3. Topological Boundary Maps for a Filtration

          27.4. Products in E1'* (X )

               27.4.1. The Exterior Product for Z1'*.

               27.4.2. Boundary Maps for a Smash of Filtered Spaces

               27.4.3. Internalizing the External Product.

          27.5. Pointed and Unpointed Filtered Spaces

          27.6. The Homology of Filtered Spaces

          27.7. Additional Projects

     
Chapter 28  The Serre Filtration of a Fibration

          28.1. Identification of E2 for the Serre Filtration

               28.1.1. Cohomology with Coefficients in Cohomology

          28.2. Proof of Theorem 28.1

               28.2.1. Setting Up

               28.2.2. The Topological Boundary Map

               28.2.3. Identifying the Differential.

               28.2.4. Naturality of E2'*

          28.3. External and Internal Products

               28.3.1. External Products for E*'* (p).

               28.3.2. Internalizing Using the Diagonal

          28.4. Homology and the Serre Filtration

          28.5. Additional Problems

     
Chapter 29  Application: Incompressibility

          29.1. Homology of Eilenberg-Mac Lane Spaces

               29.1.1. Exponents for H* (K(Z/p''); G).

               29.1.2. The Homology Algebra H* (K(Z, 2n); Z

          29.2. Reduction to Theorem 29.1

               29.2.1. Compressible Maps.

               29.2.2. The Reduction. I

               29.2.3. Maps from QS2n+l to K(G, 2n)

          29.3. Proof of Theorem 29.2

               29.3.1. Reduction to the Case G = Z/p"'.

               29.3.2. Compressibility and the Serre Filtration

               29.3.3. Consequences of Membership in Fo.

               29.3.4. Completing the Proof.

          29.4. Consequences of Theorem 29.1

               29.4.1. The Connectivity of a Finite H-Spaces

               29.4.2. Sections of Fibrations over Spheres.

          29.5. Additional Problems and Projects

     
Chapter 30  The Spectral Sequence of a Filtered Space

          30.1. Approximating Grs Hn (X) by E; 'n (X )

               30.1.1. Topological Description of dr.

               30.1.2. The Algebraic Approach.

          30.2. Some Algebra of Spectral Sequences

               30.2.1. The Category of Spectral Sequences

               30.2.2. Exact Couples and Filtered Modules

               30.2.3. Multiplicative Structure

               30.2.4. Convergence of Spectral Sequences

          30.3. The Spectral Sequences of Filtered Spaces

               30.3.1. Multiplicative Structures

               30.3.2. Convergence

               30.3.3. The Grand Conclusion.

     
Chapter 31  The Leray-Serre Spectral Sequence

          31.1. The Leray-Serre Spectral Sequence

               31.1.1. The Spectral Sequences Associated to the Serre Filtration.

               31.1.2. Nondegeneracy of the Algebra Structure

               31.1.3. Two Relative Variants

               31.1.4. The Homology Leray-Serre Spectral Sequence

          31.2. Edge Phenomena

               31.2.1. Edge Filtration Quotients

               31.2.2. One Step Back

               31.2.3. Edge Homomorphisms

               31.2.4. The Transgression

          31.3. Simple Computations

               31.3.1. Fibration Sequences of Spheres.

               31.3.2. Cohomology of Projective Spaces.

               31.3.4. Rational Exterior and Polynomial Algebras

               31.3.5. Construction of Steenrod Squares.

          31.4. Simplifying the Leray-Serre Spectral Sequence

               31.4.1. Two Simplifying Propositions.

               31.4.2. The Leray-Hirsch Theorem.

               31.4.3. Exact Sequences for Fibrations Involving Spheres

               31.4.4. The Thom Isomorphism Theorem

               31.4.5. The Serre Exact Sequence.

          31.5. Additional Problems and Projects

     
Chapter 3  Application: Bott Periodicity

          32.1. The Cohomology Algebra of BU(n)

          32.2. The Torus and the Symmetric Group

               32.2.1. The Action of the Symmetric Group.

               32.2.2. Identifying H*(BU(n)) with Symmetric Polynomials

               32.2.3. The Main Theorem

          32.3. The Homology Algebra of BU

               32.3.1. H-Structure for BU.

               32.3.2. The Diagonal of H* (BU; 7G)

               32.3.3. The Pontrjagin Algebra H* (BU; Z).

          32.4. The Homology Algebra of $\Omega$SU(n)

          32.5. Generating Complexes for $\Omega$SU and BU

               32.5.1. Generating Complex for BU.

               32.5.2. Generating Complexes for \OmegaSU(n)

          32.6. The Bott Periodicity Theorem

               32.6.1. Shuffling Special Unitary Groups.

               32.6.2. Properties of the Bott Map.

               32.6.3. Bott Periodicity

          32.7. K-Theory

               32.7.1. K-Theory and Vector Bundles

               32.7.2. Cohomology Operations in K-Theory

          32.8. Additional Problems and Projects

     
Chapter 33  Using the Leray-Serre Spectral Sequence

          33.1. The Zeeman Comparison Theorem

          33.2. A Rational Borel-Type Theorem

          33.3. Mod 2 Cohomology of K(G, n)

               33.3.1. The Transgression

               33.3.2. Simple Systems of Generators

               33.3.3. Borel's Theorem.

               33.3.4. Mod 2 Cohomology of Eilenberg-Mac Lane Space

          33.4. Mod p Cohomology of K(G, n)

               33.4.1. The mod p Path-Loop Transgression

               33.4.2. Postnikov's Theorem

               33.4.3. Mod p Cohomology of Eilenberg-Mac Lane Spaces

          33.5. Steenrod Operations Generate .Ar

          33.6. Homotopy Groups of Spheres

               33.6.1. Finiteness for Homotopy Groups of Spheres

               33.6.2. Low-Dimensional p-Torsion

          33.7. Spaces Not Satisfying the Ganea Condition

          33.8. Spectral Sequences and Serre Classes

               33.8.1. Serre Classes

               33.8.2. Some Algebra of Serre Classes

               33.8.3. Serre Classes and Topology.

          33.9. Additional Problems and Projects



Part 7  Vistas

     
Chapter 34  Localization and Completion

          34.1. Localization and Idempotent Functors

               34.1.1. Idempotent Functors

               34.1.2. Homotopy Idempotent Functors

               34.1.3. Simple Explorations

          34.2. Proof of Theorem 34.5

               34.2.1. The Shape of a Small Object Argument.

               34.2.2. The Property to Be Tested.

               34.2.3. The Construction

               34.2.4. Connectivity of Lf (X)

          34.3. Homotopy Theory of P-Local Spaces

               34.3.1. P-Localization of Spaces

               34.3.2. Hands-On Localization of Simply-Connected Spaces

               34.3.3. Localization of Homotopy-Theoretic Constructions

               34.3.4. Recovering a Space from Its Localizations

          34.4. Localization with Respect to Homology

               34.4.1. Construction of h*-Localization

               34.4.2. Ordinary Cohomology Theories

               34.4.3. Other Connective Homology Theories

          34.5. Rational Homotopy Theory

               34.5.1. Suspensions and Loop Spaces

               34.5.2. Sullivan Model

               34.5.3. The Lie Model.

               34.5.4. Elliptic and Hyperbolic

               34.5.5. Lusternik-Schnirelmann Category of Rational Spaces

          34.6. Further Topics

               34.6.1. The EHP Sequence

               34.6.2. Spheres Localized at P.

               34.6.3. Regular Primes

     
Chapter 35  Exponents for Homotopy Groups

          35.1. Construction of a

               35.1.1. Deviation

               35.1.2. Deviation and Lusternik-Schnirelmann Category

               35.1.3. Deviation and Ganea Fibrations.

               35.1.4. Compositions of Order p.

               35.1.5. Definition of a.

          35.2. Spectral Sequence Computations

               35.2.1. The Dual of the Bockstein

               35.2.2. The Homology Algebra of f2(S^3(3)).

               35.2.3. The Homology Algebra of f l2 (S3 (3) )

               35.2.4. The Homology Algebra H*(\OmegaS2p+1{p}).

          35.3. The Map \lambda

          35.4. Proof of Theorem 35.3

               35.4.1. The Map Induced by the Hopf Invariant

               35.4.2. Finishing the Argument

          35.5. Nearly Trivial Maps

     
Chapter 36  Classes of Spaces

          36.1. A Galois Correspondence in Homotopy Theory

          36.2. Strong Resolving Classes

               36.2.1. Manipulating Classes of Spaces.

               36.2.2. Closure under Finite-Type Wedges

               36.2.3. Desuspension in Resolving Classes

               36.2.4. Spherical Resolvability of Finite Complexes

          36.3. Closed Classes and Fibrations

               36.3.1. Cellular Inequalities

               36.3.2. Closed Classes and Fibration Sequences.

               36.3.3. E. Dror Farjoun's Theorem

          36.4. The Calculus of Closed Classes

               36.4.1. Fibers and Cofibers

               36.4.2. Loops and Suspensions

               36.4.3. Adjunctions

               36.4.4. A Cellular Blakers-Massey Theorem

     
Chapter 37  Miller's Theorem

          37.1. Reduction to Odd Spheres

               37.1.1. From Odd Spheres to Wedges of Spheres.

               37.1.2. Vanishing Phantoms

               37.1.3. Non-Simply-Connected Targets

          37.2. Modules over the Steenrod Algebra

               37.2.1. Projective ,A-Modules

               37.2.2. Homological Algebra.

               37.2.3. The Functor T

          37.3. Massey-Peterson Towers

               37.3.1. Relating Algebras and Modules

               37.3.2. Topologizing Modules and Resolution

               37.3.3. The Groups E2X, Y).

               37.3.4. A Condition for the Omniscience of Cohomology

          37.4. Extensions and Consequences of Miller's Theorem

               37.4.1. The Sullivan Conjecture.

               37.4.2. BZ/p-Nullification

               37.4.3. Neisendorfer Localization

               37.4.4. Serre's Conjecture



Appendix A  Some Algebra

     A.1. Modules, Algebras and Tensor Products

          A.1.1. Modules

          A.1.2. Bilinear Maps and Tensor Products

          A.1.3. Algebras

     A.2. Exact Sequences

     A.3. Graded Algebra

          A.3.1. Decomposables and Indecomposable

     A.4. Chain Complexes and Algebraic Homology

          A.4.1. Homology of Chain Complexes.

     A.5. Some Homological Algebra

          A.5.1. Projective Resolutions and TorR

          A.5.2. Injective Resolutions and ExtR(? , ?

          A.5.3. Algebraic Kunneth and Universal Coefficients Theorems

     A.6. Hopf Algebras

          A.6.1. Coalgebras

          A.6.2. Hopf Algebras.

          A.6.3. Dualization of Hopf Algebras

     A.7. Symmetric Polynomials

     A.8. Sums, Products and Maps of Finite Type

     A.9. Ordinal Numbers


Bibliography


Index of Notation


Index




نظرات کاربران